
Grant Number NAG8-093

An Intelligent Allocation Algorithm
For Parallel Processing

Chester C. Carroll
Cudworth Professor of Computer Architecture

Abdollah Homaifar
Temporary Visiting Assistant Professor

of Electrical Engineering

and

Kishan G. Ananthram
Graduate Research Assistant

Prepared for

The National Aeronautics and Space Administration

Bureau of Engineering Research
The University of Alabama

January 1988

BER Report No. 416-17

ABSTRACT

This research considers the problem of allocating nodes of a

program graph, to processors, in a parallel processing architecture.

The algorithm is based on critical path analysis, some allocation

heuristics, and the execution granularity of nodes in a program graph.

These factors, and the structure of interprocessor communication.

network, influence the allocation. To achieve realistic estimations of

the execution durations of allocations, the algorithm considers the fact

that nodes in a program graph have to comtnunicate through varying

numbers of tokens. Coarse and fine granularities have been implemented,

with interprocessor token-comanmication duration, varying from zero up

to values comparable with the execution durations of individual nodes.

The effect on allocation, of communication network structures, is

demonstrated by performing allocations for crossbar (non-blocking) and

star (blocking) networks.

many processors as it needs for the optimal allocation of any program

graph. Hence, the focus of allocation has been on varying

token-communication durations rather than varying the number of

processors.

necessary for the optimal allocation of any program graph, depending

upon granularity and characteristics of the interprocessor communication

network.

The algorithm assumes the availability of as

The algorithm always utilizes as many processors as

ii

ACKNOWLEDGEMENT

This research was supported by NASA, George C. Marshall Space
Flight Center, Huntsville, Alabama, under Grant Number NAG8-093 and
conducted in the Computer Architecture Research Laboratory in the
College of Engineering at The University of Alabama.

iii

TABLE OF

Page

ACKNOWLEDGEMENT iii

LIST OF TABLES V

LIST OF FIGURES v i i

CHAPTW 1 PROBLEM STATEMENT 1

1
5

1.1 Introduction
1.2 Literature Review

7 CHAPTER2 ALGORITHM

2.1 Introduction
2.2 Criteria
2.3 Brief Outline
2.4 Assumptions
2.5 Inputs
2.6 Detailed Description
2.7 Outputs

7
8

13
14
15
16
29

CHAPTER 3 EXAMPLES 30

3.1 Introduction
3.2 Example la
3.3 Example lb
3.4 Example 2

30
31
39
46

CHAF'TW 4 RESULTS AND CONCLUSIONS 56

BIBLIOGRAPHY 59

APPENDIX A Pre-allocation analysis and allocation tables for a
missile guidance problem

61

APPENDIX B Determination of earliest times of nodes 65

APPENDIX C Determination of latest times of nodes 66

APPENDIX D Program listing 67

iv

LIST OF TABLES

Table

1 Pre-allocation analysis with equal durations for figure 13

2 Resource aIIocation for table I when CT = 0

3 Resource allocation for table 1 when CT = ti2

4 Schedule of interprocessor communication for table 1
when CT = t/2

5 Resource allocation for table 1 when CT = t

6 Schedule of interprocessor communication for table 1
when CT = t

7 Pre-allocation analysis with unequal durations for figure 13

8 Resource allocation for table 7 when CT = 0

9 Resource allocation for table 7 when CT = t/2 .

10 Schedule of interprocessor communication for table 7
when CT = tj2

11 Resource allocation for table 7 when CT = t

12 Schedule of interprocessor communication for table 7
when CT = t

13 Pre-allocation analysis for figure 20

14 Resource allocation for table 13 when CT = 0

15 Resource allocation for table 13 when CT = t/2

16 Schedule of interprocessor communication for table 13
when CT = ti2

17 Resource allocation for table 13 when CT = t

Page

36

37

37

35

35

39

44

44

44

44

45

46

53

53

54

54

55

V

18 Schedule of interprocessor communication for table 13
when CT = t

55

vi

LIST OF FIGURES

F-igure

1

2

3

4

5

6

7

8

9

10

I 1

12

13

14

15

16

17

1s
19

20

A program graph

Illustration of communication

Identification of critical paths (case 1)

Identification of critical paths (case 2)

Allocation of node ‘N’ to a parent processor

Execution and communication durations of parent nodes

Illustration of earliest executable time

Illustration of allocation

Illustration of output priorities

Slack durations of nodes

Illustration of input to critical nodes

Illustration of input schedules

Program graph 1

Timing diagram of graph represented by table 1 for CT = 0

Timing diagram of graph represented by table 1 for CT = ti2

Timing diagram of graph represented by table 1 for CT = t

Timing diagram of graph represented by table 7 for CT = 0

Timing diagram of graph represented by table 7 for CT = t,2

Timing diagram of graph represented by table 7 for CT = t

Program graph 2

vii

Page

3

12

17

IS

21

23

23

24

25

26

26

25

34

35

35

36

42

42

43

50

21

22

23

Timing diagram of graph represented by table 13 for CT = 0 51

51

52

Timing diagram of graph represented by table 13 for CT = ti2

Timing diagram of graph represented by table 13 for CT = t

viii

CHAPTER ONE

PROBLEM STATEMENT

1.1 INTRODUCTION

With upper limits being reached in the speed of semiconductor technology,

new avenues have to be exploited for achieving real time response to many

practical problems. Parallel processing promises considerable insight into

solutions for such applications. Extensive research is being conducted in this

direction. Parallel processing is possible because of the existence of implicit

parallel executions of the instructions and tasks of application algorithms.

The conventional Von-Neumann architecture employs program control to

execute instructions sequentially. Parallel processing utilizes two or more

processors connected by a communication network, and, each of these processors

may work simultaneously on non data-dependent sub-functions of the algorithms

to achieve faster execution. A parallel architecture may consist of a number of

processors, and each of these may execute sequentially under program control or

be totally data driven. In either case, the ultimate goal is to achieve a real time

response by assigning concurrently executable instructions to different processors.

As the cost of hardware is reducing day-by-day, parallel processing

architectures with large numbers of processing elements and various

communication networks are becoming viable. These architectures ha\-e

sufficient processing power to execute programs for real time systems. Therefore,

1

2

proper utilization of these resources, and intelligent division of the work load

between processors could achieve extremely fast algorithm executions. This is

precisely the thesis of this research.

Any program, or task, may be represented by a program graph. As shown

in figure 1, a program graph consists of nodes representing instructions, and

connection arcs for the data-dependency between nodes. The parent nodes of any

node are those which supply data to it. Similarly, dependents of a node are those

to which it supplies data. A node is ready for execution only after its parents

have completcd execution, and their results have reached the node. The time

expcnded in cxccuting the instruction represented by a node, is the execution

duration of the node, while time expended in communicating the result to the

node’s dependents, is the communication time. Data is passed between nodes in

the form of tokens. Multiple tokens may be required to represent the result

produced by any node. Instructions represented by nodes in a program graph

determine its granularity, and this increases with the complexity of the nodes.

When nodes represent entire functions, the graph is said to be coarsely granular.

On the other extreme, if individual nodes represent single instructions, the graph

is finely granular. For the propcr utilization of hardware resources to get the

fastest execution; granularity, parallclism, and communication, must all be

considered.

Conversion of a source program written in an application language, to a

program graph, is donc by a compiler. Providcd the problem is similarly coded,

the graph gcneratcd by the compilation of different languages would be similar

for a givcn architecture. This is analogous to thc situation whcrc compiled codes

3

of a problem written in different high-level languages are the same for a given

uniprocessor.

Figure 1. A program graph

In the case of a uniprocessor system, all instructions are allocated to it.

However, in a parallel processing environment, the instructions have to be

allocated judicipusly to all the available processors for parallel execution, so that

the application program is executed within the minimum amount of time. This

important function of partitioning a program graph and allocation of its nodes

to different processors, with a view of obtaining fast execution, is done by an

allocation algorithm.

The total execution duration of any program graph, in a parallel processing

environment, can be subdivided into the actual execution duration of nodes. and

the time spent in internode communication. It is the function of the algorithm to

minimize the sum of these two durations. In order to minimize the actual

3

execution duration of the nodes, they are to be allocated to different processors,

so that executable nodes do not have to wait for the allocated processor to

complete its previous execution. This, however, results in increased internode

communication duration, as only communication between nodes allocated to the

same processor involves zero time duration. Minimization of internode

zommunication duration requires the allocation of all nodes to a single processor,

since interprocessor communication involves a finite time as opposed to

intraprocessor communication which does not expend any time. This extreme,

however, maximizes queueing delay, thereby maximizing the actual time duration

of execution of nodes.

A balance therefore, has to be drawn between minimization of queueing and

interprocessor communication delays. Thus, only an optimal amount of

parallelism has to be exploited by the algorithm. Factors such as execution speed

of the hardware, bandwidth of the network and granularity of the graph, a11

affect the amount of parallelism that should be exploited for an optimal

allocation.

An allocation slgorithm may either be static or dynamic, depending upon

whether it makes allocations prior to, or during run time of the application

program. Both methods have their own advantages and disadvantages. A

properly designed dynamic allocator may perform better, especially in problems

involving inputs from the external world. Since the allocator uses dynamically

updated global information of all processors, a more efficient allocation is made.

However, communication of the status of individual processors to the allocator

may take a large share of the network bandwidth. If sufficient information is not

dynamically supplied to such an allocator, it may lead to a bottleneck. The

5

advantage

actual run

of a static allocation algorithm is

time of the application program.

that it does not contribute to the

Well designed static allocators may

be nearly optimal. It should be noted that the problem of allocation is

NP-complete.

The goal of any allocation algorithm is to minimize run time of the

application program. This is attained by minimization of the actual

time-of-execution of nodes, interprocessor communication time and run time

analysis of the graph.

1.2 LITERATURE REVIEW

This research includes a discussion of some algorithms that have been

developed by researchers, in an effort to find a near optimal solution to the

NP-complete problem of allocation. Some of these algorithms have been directed

at specific architectures and applications. Although, tho houristics on the basis

of which these algorithms have been developed are different, all of them aim at

the realization of real time response.

Hong, Payne and Ferguson [11 have developed an algorithm for dynamic

hypercube architectures. Their scheme divides the original program graph into

disjoint tree shaped partitions. Nodes of some of these trees have only one input,

while those of others have only one output. Individual trees are then mappod

onto distinct faces of the hypercube. Every node in a tree is allocated to a distinct

processor, located as close as possible to the processor which computes its parent.

Campbell [2] proposed a static allocation algorithm for 3-D bussed cube

architectures. His algorithm consists of local and global allocators. After

topologically sorting the nodes in a breadth-first manner, thc local allocator

6

assigns them to individual processing elements of the Hughes dataflow machine.

In selecting a suitable processor for any node, the allocator applies two heuristic

cost functions, namely, parallel processing cost and communication cost; and

allocates the node to the processor returning the lowest total cost. The global

allocator is similar to the local allocator, but only works on larger parallel

modules consisting of several nodes, and allocates each of these modules to

different sections of the hardware. Due to the amount of computation involved

in allocating each node, this algorithm takes a long time to arrive at an optimal

result.

Ho and Irani [3] proposed a static allocation algorithm which simulates

runtime environment. Their scheme requires much information about the

changing environment. For any node, this algorithm selects the processor which

gives the best performance in simulation. As this algorithm also involves

estensive computation, it is a lengthy process.

For graphs which are not so finely parallel, a lot of scheduling algorithms

have been developed. While some of these algorithms totally neglect

interprocessor communication time. others try to avoid it by redundant execution

of nodes on various processors. Markenscoff and Liaw [4] have developed

allocation schemes for distributed systems. Their schemes, namely, branch and

bound, greedy and local search, do not allow interprocessor communication.

Hence, nodes upon which any node is dependent for its input data, also have to

be allocated to the same processor. This results in redundant execution of many

nodes. The tradeoff in this case is between redundancy in execution and

interprocessor communication time.

CHAPTER TWO

ALGORITHM

2.1 INTRODUCTION

As mentioned in the earlier chapter, an allocation algorithm is crucial to the

exploitation of parallelism in a program graph and the proper utilization of

hardware resources. An efficient, optimal map of nodes to processing elements,

is obtained only when parallelism and sequentialism in the program graph,

execution durations of the various instructions, and interprocessor

communication durations are all viewed in the proper perspective. Only an

algorithm which considers all these important factors arrives at a practical map,

and makes a realistic .estimate of the duration of execution.

Time taken in interprocessor communication has not been given sufficient

importance in some of the allocation schemes described earlier. Communication

between processors involves a certain finite time due to transmission of data

tokens. Only in graphs whose nodes are of coarse granularity, wherein the

execution time of any node is much larger than the commmunication time, can

the latter be totally neglected. The significance of interprocessor comnunication

time delay increases as its ratio with execution time increases. This is of prime

importance when communication time is comparable with execution time. Due

to this communication delay, even an optimally allocated graph may not execute

within the minimum time as dictated by its critical path (to be discussed in the

7

8

foIlowing section). Hence, interprocessor communication time has to be given due

importance while allocating a program graph. It may be necessary to sacrifice a

certain amount of parallelism due to the interprocessor communication involved.

2.2 CRITERIA

Certain factors are important to an allocation algorithm. These are earliest

time, latest time, critical paths, network characteristics, processor execution and

communication characteristics, etc.

Nodes in a program graph can be executed only when they have received

their individual inputs. Thus, the earliest that a node is executable is when all

of its parents have completed execution and the results have been passed on to

the node. A term called 'earliest time of the node' follows from this. The earliest

time of a node specifies the earliest that the node may begin execution, and is

determined by the input that arrives 1 s t (deterministic input). I t depends upon

execution time durations of previous nodes, and is defined as being equal to the

time at which all inputs to the node are available, provided that all the previous

nodcs have executed at their respective earliest times. It may also be defined as

the maximum of the sum of earliest times of parent nodes and their respective

execution time durations. The earliest time of a node with no parents is equal to

zero. The algorithm represented in appendix B uses the latter definition to

detcrmine earliest times of nodes in a program graph.

When all nodes in a program graph execute at their carlicst times, the graph

is executed in the minimum possiblc timc duration. This timc duration is callcd

thc 'minimum time of execution.' I t is not possible to excmte 3 p p h within a

timc frame lcss than thc minimum timc of cxccution. An zr1location that achicvcs

9

execution in the minimum time of execution is the optimal one. Thus, the

minimum time of execution gives a theoretical lower bound for the execution

duration of the graph, and is a good measure for evaluating the performance of

an allocation algorithm. I t is to be mentioned here that the definition of

minimum time of execution assumes zero communication delay between nodes.

Hence, in practical systems, in which interprocessor communication has a finite

significant value, it is not possible to make an allocation that will execute the

graph within this time frame.

The earliest time of a node, which was defined earlier, is the time at which

all the inputs to the node are available, provided parcnt nodes had executed at

their respective earliest times. Thus, the earliest time of any node is determined

by the input that arrives last. The other inputs may arrive at any time prior to

the arrival of the deterministic input. Those parents which are the sources of

thcse non-deterministic inputs may execute at a time later than their earliest

times, and the program graph could still execute within the minimum time of

execution. This leads to the definition of another term called the ‘latest time’.

The latest time of a node is the latest it may execute, without prolonging the

execution of a graph, beyond its minimum time of execution. It is hence obvious

that the latest time of a node with no dependents, is equal to the difference

between the minimum time of execution of the graph and the execution duration

of the node. The latest time of any other node is equal to the difference betwccn

the minimum of the latest times of its dependents and its execution duration.

This definition is implemented in the algorithm shown in appendix C.

A node may begin execution any time between its earliest and latest timcs

without increasing the total execution time of the graph. This time period,

10

between the node’s earliest time and latest time, is known as the ’slack’ or the

’optimally enabled state’ of the node. It is highly desirable that every node should

begin execution in its slack to achieve minimum time duration of execution of a

program graph.

The earliest time and latest time of certain nodes are found to be equal.

These nodes are called critical nodes, as delaying their execution beyond their

earliest times results in an increase in the duration of execution of a graph by an

amount equal to the delay. In order to achieve minimum duration of execution,

it is very important that these critical nodcs be scheduled for esccution at their

respective earliest times. Non-critical nodes may be scheduled for esecution. any

time between their respective earliest and latest times. without sacrificing the

speed of execution.

Study of many program graphs has revealed that critical nodes occur in

sequence thereby forming a critical path that runs through thc program graph.

A graph may have one or more such critical paths. Nodcs in a critical path are

not only critical but also sequential.

Communication is very important in a parallel procossing cn\.ironment. To

capitalize on gains made by parallel processing, an efficicn t communication

network is necessary. The allocation algorithm should schcdule the flow of tokens

so that network contentions do not occur. The characteristics of different

networks vary. A star network can be implemented with minimum hardware.

however, it allows only one pair of processors connected to it to communicate at

a time. The communication distance between any two pairs connected to a star

is a constant. A crossbar network between the processors, would be totally

non-blocking, allowing simultaneous communication between processors. E l m

11

in this case, a processor may not receive information simultaneously from two or

more processors. Study of program graphs has revealed that although some

nodes within each module can be executed in parallel, communication between

nodes can be scheduled sequentially without a great loss of performance. Thus,

the allocation algorithm has to schedule transmission of data from one node to

another so that network or processor contentions do not occur, and data reaches

destination nodes within their slack times.

The next factor to be considered is the communication characteristic of

individual processors. Usually, processors can either send or receive only one

data token at any given time. As mentioned before, many nodes are to be

assigned to each processor. Each node assigned to a processor, may send or

receive one or more tokens to or from other processors. The allocation algorithm

should schedule all communication of this processor so that contention does not

occur. Particular attention is to be paid in scheduling communication caused by

directly data dependent nodes that are assigned to the same processor. A parent

node assigned to a processor will need to communicate its result to all its

dependents, while one of its dependents which is assigned to the same processor,

may simultaneously need to get its data from its other parents. This situation is

illustrated in figure 2. Therefore, the order in which results have to be sent to

dependents, and the instants at which these have to be done. is to be intelligcntly

decided by the algorithm.

,

Due to the limited instruction storage capacity of each processor, only 8

certain number of nodes can be stored at any given time. Likewise, the number

of nodes that the architecture can hold at any given time is also limited. If thc

number of nodes in a program graph is greater than the storage capacity of the

architecture, or even if more nodes than can be stored in a processor has to be

allocated to it, some nodes will have to be loaded during run time. This can be

done in two different ways. In the first method, the allocation algorithm divides

the node-to-processor map into many modules, and successively loads these

6
Figure 2. Illustration of comrnunication

modules as each completes execution. Therefore, after execution of each module,

3 certain amount of time is expended in loading the nodes of the next module on

to the processors. This method is especially suited to architectures whose

communication networks have small bandwidths. In architectures having more

extensive communication structures, a different method may be used. As 3nd

when nodes are executed in the processors, they are removed from the instruction

store, thus creating free memory space in which new instructions may be loaded.

13

New nodes may therefore be loaded on to the processors by the allocation

algorithm, simultaneously with the execution of the program; and for doing this

a load time has to be associated with each node. It is at this load time, that the

allocation algorithm loads the node on to the processor. This method could be

well implemented in a non-blocking communication network architecture, such

as a crossbar, and also in blocking networks when the program graph is coarsely

granular.

Allocation of critical nodes, and the exact scheduling of their execution, is

extremely crucial to the execution of a program graph, in the minimum possible

time. Similarly, scheduling the execution of non-critical nodes within thcir slack

times is also important. I t may not always be possible to do this due to

communication characteristics of the architecture, and fineness in the granulririL:.

of a program graph. The exact scheduling of critical nodes is attempted by

assigning all the nodes in a critical path to a single processor. In addition to

doing this, the inputs to these critical nodes should reach the assigned proct.h.kir

prior to their critical times. In allocating non-critical nodes, the algorithm should

locate a processor that is idle during the node’s slack period, and allocate the

node to it if all inputs to the node can reach it within its latest time. If one such

processor is not available, the algorithm should allocate the node to any other

processor, so that delay in execution of the node beyond its slack time is a

minimum.

2.3 BRIEF OUTLINE

The algorithm adopted in this research, involves the determination of critical

paths, and-allocation of each critical path to an individual processor. Once the

14

processors for all critical paths are identified, the algorithm then sorts all the

nodes in an increasing order of their latest times. Nodes with the same latest

times are sorted in a decreasing order of their earliest times, which is the same

as the increasing order of their slack times. Nodes in a program graph are

allocated one-by-one as per the order established earlier, on the basis of certain

principles that are described in a later section. The various phases in the

algorithm are listed below.

- Determination of earliest times.

- Determination of latest times.

- Determination of critical paths.

- Ordering the nodes for allocation.

- Assigning of critical paths to processors.

- Allocation of nodes to processors, scheduling of their execution and their

communication.

The first four, of the above phases. fall into the pre-allocation processing

group, while the last two compose the allocation group.

2.3 ASSUMPTIONS

Assumptions made in the design of this allocation algorithm are described

in this section.

Very large programs are already partitioned, if possible, into smaller

modules that have very little, or no data-dependency between them. This may

be done by looking at the syntax of the high-level language which is the source

of the program graph. The algorithm works on these modules, one at a time, and

maps them on to a hardware submodule (cluster, 9 side of a hypercube, ctc.).

1s

The nodes in each partitioned module of a program graph are numbered by

some other algorithm, so that a parent always has a numerically lesser node

number than its dependents.

The algorithm assumes the availability of an unlimited number of processing

elements on to which it can allocate the program graph. This is justifiable as

hardware cost keeps reducing with advances in technology, and a lot of

processing elements may be used in any architecture. Hence, the graph may be

spread in an optimally parallel fashion without any loss of parallelism due to

hardware constraints.

The algorithm needs as its input, and hence assumes the availability of time

durations of execution of various instructions that are associated with the nodes

in a program graph. It is possible to determine the execution duration of all the

instructions of a processor.

Another input needed by the algorithm, is a list of communication time

durations for a single token between various processors in an architecture.

Interprocessor communication time durations depend upon the structure of the

interconnecting network between processors in a module of the hardware

arc hi tect ure.

Communication between processors is by token passing. The outputs

produced by different nodes may be of varying lengths, and hence require

different numbers of tokens.

2.5 INPUTS

The inputs to the allocation algorithm are listed below.

- Table of execution durations of the various instructions.

16

- Table of interprocessor communication times for a single token.

- Program graph, with the nodes numbered in an order of dependency.

- Number of tokens needed to represent the output of each node.

2.6 DETAILED DESCRIPTION

As mentioned earlier, the algorithm works in various phases that fall into

two distinct groups. The analysis group comprises of the determination of earliest

times, latest times and slack periods of nodes, determination of critical nodes and

critical paths, and the ordering of nodes for allocation. The allocation group

involves the allocation of critical paths, scheduling execution of nodes and

scheduling of interprocessor communication.

The earliest times of all nodes are determined by using the algorithm shown

in appendix B. Determination of earliest times begins with node number one, the

root node with no parents. Finally. the minimum time of esocution of the

program graph is determined.

The next phase in the analysis of a program graph, is the determination of

!atest times and slack durations of all nodes. The algorithm for this is shown in

appendix C. Determination of latest times begins with the final node hac-ing no

dependents and the largest node number. The latest time of any node is

determined by the least value of the latest times of its dependents.

Critical nodes and critical paths are next identified. All nodes having their

earliest time equal to their latest time are critical nodes. These nodes have no

slack durations, and have to be scheduled for execution exactly at their critical

times to avoid lengthening program execution. Critical nodes occur sequentially

in a program graph forming one or more critical paths.

17

Identification of critical paths is done as follows. Any critical node having

no inputs from other critical nodes is considered to head a critical path. If only

one parent of a critical node, is critical, the node is identified as belonging to the

critical path formed by this parent. In certain cases, two or more parents of a

critical node are also critical, and on the basis of certain principles, the critical

node has to be identified as belonging to one of the critical paths formed by its

parents. Figure 3 illustrates such a case, where both parents of the critical node

N are critical, and only one of these parents is the last node of a critical path

(critical path 1). The other parent, in critical path 2, already has a critical

successor identified with it. In such cases, the node is identified with critical path

1.

Critical Path 2

Figure 3. Identification of critical paths (case 1)

In another case, as illustrated by figure 4, both critical parents of the critical

node N, are the last nodes in their respective critical paths. In such cases, the

node is identified as belonging to the path formed by the parent that completes

execution last, and hence determines the critical time of the node. If both parents

complete execution at the same time, the node is identified with the path formed

by the parent that generates more output data, so that a smaller amount of time

is lost in interprocessor communication.

The final phase in the pre-allocation analysis group is the ordering of nodes

for allocation. Nodes with lower values of latest times have to be allocated first.

Amongst nodes with equal latest times, those with shorter slacks are given

priority. To do this, nodes are numbered in an increasing order of their latest

times, and those with equal latest times are numbered in a decreasing order of

their earliest times.

Critical Path 2

Figure 4. Identification of critical paths (case 2)

19

Critical paths determined earlier are each identified with a processor. The

algorithm considers one critical path at a time, and identifies nodes in the path

with a single processor free to execute them at their critical times. These nodes

are later allocated to the identified processor. As the algorithm assumes the

availability of an unlimited number of processing elements, it can be guaranteed

that an idle processor will be found for allocation of each critical path. The

reason for allocating all nodes in a critical path to a single processor, is they are

essentially sequential, and the critical time of any node is exactly a t the

completion of execution of its parent node in the critical path. Allocation of such

data-dependent nodes to different processors would definitely lead to

interprocessor communication delay. If on the other hand, these nodes are

allocated to the same processor, communication delay is introduced only if data

tokens coming from other parents cannot reach the processor within the latest

times of the nodcs.

Both critical and non-critical nodcs are next allocated sequentially in the

order established earlier. Allocation of non-critical nodes in\-olves the

determination of a processor that is idle to execute the node during its slack time,

and is also free to communicate with the processors that have the node’s parcnts

and dependents assigned to them.

Determination of a processor for non-critical nodes is carried out by the

application of certain principles that are discussed next. It is apparent that any

node, and any of its parents, cannot be executed in parallel due to the data

dependency between them. The relationship between them is essentially

sequential, and the node maybe executed only after the execution of its parents.

The parents of a node may however, be executed in parallel and can be allocated

20

to different processors. In order to avoid delay due to interprocessor

communication, the node has to be allocated to the same processor as its parent.

Figure 5 shows a node N with earliest time En and latest time Ln. Ideally,

execution should begin a t a time between En and Ln. In most cases a processor,

to which one of the parents Pa, Pb or Pc is assigned, will be free to execute node

N between En and Ln. The node N is then allocated to this processor. In case

two or more processors which have parents assigned to them, are free to execute

node N some time between En and Ln, an intelligent selection has to be made.

I t is assumed that ta, tb and tc are the beginning times of execution, and d,, d b

and dc, are the durations of execution and a, b and c are the number of tokens

in the result of parent nodes Pa, Pb and Pc respectively. If either a, b or c is

unusually large (result being large, such as a string), then node N is allocated to

corresponding processors PRa, PRb or PRc respectively. This eliminates

exccssive communication, and hence reduces network or processor contentions.

I f a, b and c are all comparable, then node N is allocated to the parent processor

(proccssor to which one of the parent nodes is allocated) that returns the highest

value for the expression given below.

tx + dx + x*k (1)

where x = a, b, c and k = time duration of communication of one token.

In the event that none of the parent processors PR,, PRb, PRc etc. are free

to execute N in its slack period, any processor (including parent processors) that

returns the minimum value for the expression given below is selected.

Executable time = MAX (X,Y) (2)

where X is the time at which all tokens arrive from the parent processors, and Y

is the earliest the proccssor is free to execute the node.

21 '

The assumption of the availability of an unlimited number of processors,

assures that a free non-parent processor can be found to execute the node at any

time. If the time at which data can be sent to this processor, from the node's

parents, is less than executable times of the parent processors, the node is

allocated to it; else it is allocated to the parent that is free earlier. I t then incurs

queueing delay. Hence, a tradeoff is made between queueing delay and

communication delay.

IPR, b--
IPR, b--

Figure 5. Allocation of node 'N' to a parent processor

Figure 6 shows an application of the principle mentioned earlier. The node

N is allocated to PRb so that communication between node Pb and N does not

have any effect. The time tn at which the node may begin execution is when its

other inputs from Pa and Pc have reached Pb.

As a processor can receive information from only one processor at a time,

communications from Pa and Pc to PRb, have to be done sequentially. This is

22

illustrated in figure 7. In this case, tn is the exact time at which node N can

execute. If tn lies between En and Ln, or if En and Ln are after tn, then the node

N may be executed without any delay, else an inevitable communication delay is

introduced.

In figure 8, parents P i and P2 of N2, have been allocated to processors

PR1 and PR2 respectively. The dependents of P i are N1, N2 and N3, and those

of P2 are N2 and N4. The allocation of node N2 is now explained. Supposing the

order established in pre-allocation mode returned a higher priority (lower

number) for N2, than for N1 and Nf, N2 could be allocated to either P R I or

PR2, depending upon which one of them returned a higher value for espression

1. If one of the parent nodes generates comparatively a large amount of data,

N2 is allocated to that parent's processor. On the other hand, if N? is given a

lower priority than N I and NJ, it cannot be allocated for immediate esccution

on either PR1 or PR2, due to N1 and N 1 already being allocated to them. In

such an event, the processor that returns a minimum 1,alue for expression 2 is

selected.

Once a node has been allocated to a processor, communication of outputs

from the node have to be scheduled. Tokens have to be sent to the dependents

in an increasing order of their latest times. When two or more dependents have

the same latest time, output is first sent to the node with a greater number of

dependents. In figure 9, output is first'scheduled to node D,.

PE

pc

cccccccccccccccccccc

0

0

C

I

ccccc
t

Figure 6. Execution and communication durations of parent nodes

I cc cc caca

Y

t

Figure 7. Illustration of earliest executable time

. 9

PR1 P R2 p R3

Figure 8. Illustration of allocation

25

Figure 9. Illustration of output priorities

Another criterion that influences communication scheduling, is the earliest

time of dependent nodes. Although it is desirable to have the output routed to

dependent nodes just before their earliest times, doing it much earlier to this is

not advantageous. In figure 10, although 1, < lb, output from node N may be

first routed to dependent Db, if the output to dependent Da can still be routed

so that it reaches D, within its slack time.

When one or more dependent nodes are critical nodes, the output should

first be directed to these nodes without delay. A little delay, even beyond the

latest time, can be tolerated by non-critical nodes.

26

I
I

I
I

EA LA t 0
DA I

I
I
I

EA LA t 0
DA

Figure 10. Slack durations of nodes

Figure 11. Illustration of input to critical nodes

27 .

Every time communication is scheduled between two processors due to token

passing between nodes allocated to them, it is recorded, so that other

communications are not scheduled to the processors at those same time.

Therefore, communication durations of all processors, due to data transfer

between nodes allocated to them have to be recorded. In blocking

communication networks, even various communication durations of the network

have to be recorded. Likewise, to avoid scheduling two or more nodes for

execution simultaneously on the same processor, execution duration (busy times)

of each processor is recorded.

The priorities in which outputs of a node are to be sent to its dependents are

established immediately after its allocation. However, actual scheduling of these

communications can be made only after the dependent nodes are allocated.

Thus, when a node is allocated, its inputs are actually scheduled, while its outputs

are given priorities. Scheduling of inputs can be done only after all of its cousins

(other dependents of its parents) have also been allocated. .

In figure 12, Pa and Pb are the parents of node N, and nodes C1, C2 and

C3 are its cousins. The dependents of Pa are N and C1, and the output from

Pa is prioritizcd as (N, C1). The dependents of Pb, and its output priorities are

given by (C2, N, C3). In this case, the input to N from Pa can be scheduled

immediately after its allocation, while its input from Pb has to be scheduled only

after the allocation of C2.

The algorithm associates certain information with each node. The following

information regarding each node is supplied as input to the algorithm. Each node

is given a 'node number' for identification. The 'instruction number' associated

with it identifies the instruction that the node executes. The 'number of parents',

28

their respective node numbers, ’number of dependents’ and their respective node

numbers, give the data-dependencies of the node. The ’number of tokens’ needed

to represent the output produced by the node is also given as input to the

algorithm. The following information associated with each node is generated as

output by the algorithm. The ’load time’ specifies the time at which the node is

to be sent to the processing element. The ’earliest time’ and ‘latest time’ of the

node are determined by the algorithm. The ‘execution time’ specifies the time at

which the node is scheduled for execution on its assigned processor. The

algorithm also determines the priorities and schedules for communication of

results to the node’s dependents.

Figure 12. Illustration of input schedules

The algorithm associates some information with each processor, to aid it in

its allocation. The ’number of nodes allocated’ to the processor is always

updated. The ’final ready time’ of the processor, which is the earliest time beyond

which no nodes are scheduled for execution on it, aids the algorithm in dlocating
~

29 .

subsequent nodes. The time periods during which the processor is busy executing

nodes, and the time periods when the processor is communicating with other

processors, are also recorded.

2.7 OUTPUTS

The outputs of the algorithm are listed below.

1. Processor allocated to each node.

2. Load-time and execution beginning time of each node.

3. Schedules of outputs to dependents, for each node.

4. Busy and communication durations of each processor.

5. Various communication durations of the network.

CHAPTER THREE

EXAMPLES

3.1 INTRODUCTION

In this chapter, two examples are presented to illustrate the allocation

algorithm delineated in chapter 2. Reiterating what was mentioned earlier, it can

most definitely be stated that, efficiency of an allocation made by any algorithm

~ 1 2 be measured by the zroximity between values of actual duration of execution

of a graph, and the minimum time of execution as dictated by the critical paths,

when time taken in interprocessor communication is assumed to be zero. The

examples are presented in a form to illustrate node-by-node allocation, and

scheduling of communication between nodes.

The basic time unit is assumed to be t. In the examples shown, execution

duration of various instructions vary from t to 4t. Communication between

nodes is by token passing. Depending upon the amount of data to be sent by any

node to its dependents, multiple tokens may be necessary to represent it. For

each graph, allocation has been made for different values of communication time

(CT) of a single token (for CT = 0, ti2, t). To illustrate the flexibility of the

algorithm with respect to the arxhitecture, allocation has been done for both

blocking and non-blocking communication networks.

When the communication time of a single token is assumed to be zero, a

program graph represents a coarse grain system, in which communication time is

30

31 .

negligible compared to execution time of individual nodes. On the other egtreme,

when communication time of a single token is assumed equal to t, the program

graph represents a fine grain system in which the flow of information between

nodes takes as much time as the execution durations of individual nodes. Thus,

the allocations indicate the algorithm’s applicability to different levels of

parallelism.

Pre-allocation processing, which encompasses the determination of earliest

and latest times of all nodes, and the ordering of these nodes for allocation, is not

explained in this chapter. Only, identification of critical paths and the actual

allocation of nodes are explained.

3.2 EXAMPLE l a

The first example is shown in figure 13. In order to clearly illustrate the

allocation principles, first, equal esecution durations o f t arc assummed for all

nodes. Also, with the same intention, interprocessor communication time is

assumed to be zero for this example. Later examples in this chapter take the

communication delay into account. Table 1 represents pre-allocation analysis of

figure 13, and lists the nodes in the graph, their execution durations, earliest

times, latest times, number of tokens and their order of allocation. The minimum

time of execution of the graph is found to be St. Nodes 1, 2, 6 , 7 and 9 are

identified as critical nodes. When the graph is traversed from node 1 to node 9,

all critical nodes are found to be sequential, thereby forming only one critical

path. In this graph, there is no instance of a critical node having more than one

critical parent. As per the principles of the algorithm, these critical nodes have

to be allocated to the same processor, namely processor 1. Their execution times

32

are decided after the allocation of their parents. The timing diagram shown in

figure 14 represents the allocation of this graph. Nodes are allocated in the order

that was established in the pre-allocation mode. Node 1 is scheduled for

allocation at time ’0’ on processor 1. Node 2 is scheduled on processor 1 at time

t, and node 6 is scheduled on the same processor at time 2t. Node 3 is to be

executed between its earliest time t and latest time 2t. As processor 1, to which

node 3’s parent, node 1 is allocated, is busy during this time frame, node 3 is

scheduled for execution at time t on processor 2. Similarly, node 4 is scheduled

on processor 3 at time t. The critical time of node 7 is 3t, and its parent nodes

6, 3 and 4 have all complete execution by time 3t, hence, node 7 is scheduled for

execution on processor 1 at time 3t. Node 5 is to be scheduled between its earliest

time 2t and latest time 3t. As processor 1, to which its parent, node 2 is allocated,

is busy during this time frame, node 5 is allocated to processor 2 and scheduled

for execution at 2t. Node 8 is scheduled for esccution at its carliest time 3t on

processor 3 to which its parent, node 4 is also allocated. The critical node 9 is

scheduled for execution on processor 1 at its critical time 4t, as all its parents ha*e

completed execution by this time.

As illustrated in figure 14, the graph completes execution by 5t, which is its

minimum time of execution. Three processors have been utilized by the algorithm

to schedule the graph’s execution. The allocation for this case is prescnted in

table 2, appearing at the end of this section.

Timing diagrams of figures 15 and 16, and tables 3 and 5 reprcscnt thc

allocation of the graph, when time duration for interprocessor communication of

a single token is assumed to be ti2 and t respectively. The respective

interprocessor communication schedules are shown in tables 4 and 6. All nodes

33

are assumed to generate only one token as their outputs. Communication of

tokens between nodes allocated to the same processor is assumed to involve no

time. Due to the structure of the communication network (crossbar), broadcast

ability in transmission of tokens to dependents, is made use of. These allocations

are not explained here, as a detailed explanation of a more general case involving

communication appears at a later stage in this chapter.

As illustrated in figure 15, the graph will complete execution within a time

period of 5.5t when token communication duration is tj2 (half the execution

duration of any node). This represents an increase of only 0.5t beyond the

minimum time of execution of the graph. When token communication duration

is assumed to be equal to execution duration of any node, as shown in figure 17,

the graph is scheduled on three processors to execute within a time period of 7t.

Figure 13. Program graph 1

35

I
I

PR3

PR3 1 4) 8 (I I I I 1 I i I 1 1 I I I 1 1

1 2 3 4 5 6 7 8 9 ~

\ S ' I Y .

I 4, 1 4 1 1 I I I 1
1 I 1 I I I 1 1 1

Figure 14. Timing diagram of graph represented by table 1 for CT = 0

% '
Figure 15. Timing

2 3

diagram

4 5 6 7 8 9

of graph represented by table 1 for CT

T

t,:'2

36 .

2 3 % '
Figure 16. Timing diagram

4 5 6

of graph represented

7 8 9~

by table 1 for CT = t

Table 1
Pre-allocation analysis with equal durations for figure 13

37

Processor
PRl
PR2
PR3

Table 2
Resource allocation for table 1 when CT = 0

Nodes (x,y,z)
(O,I, t) (t,2,2t) (2t,6,3t) (3t,7,4t) (4t,9,5t)

(t , 3 m (2t,5,3t)
(t,4,20 (2t,8,30

PRl
PR2
PR3

(x,y,z) : Xode Sy is scheduled to begin execution at x and end at z

(0.1, t) (t,2,2.0t) (2t,6,3t) (3.5t,7,4.5t) (4.5t,9,5.5t)
(1.5t,3,2.5t) (2.5t,5,3.5t)
(1.5t,4,2.5t) (2.5t,S,3.5t)

Table 3
Resource allocation for table 1 when CT = t.'2

I Processor I Sodes (X.Y.Z) I

(x,y,z) : Xode Sy is scheduled to begin execution at x and end at z

38

Processor
PRl
PR2
P.R3

Table 4
Schedule of interprocessor communication for table 1 when CT = t/2

.
Sodes (x,y,z)

(O,l, t) (t,2,2t) (2t,6,3t) (3t,5,4t) (jt,7,6t) (6t,9,7t)

(2t,3,30
(2t,4,3t) (3t,8,4t)

I N1
I N2

(d,p,x,y) : Communication to dependcnt ’d’ allocated to processor ‘p’ is scheduled
between ’x’ and ’y’.

Table 5
Resource allocation for table 1 when CT = t

(x,y,t) : Node Ny is scheduled to begin execution at x and end at z

39

Table 6
Schedule of interprocessor communication for table 1 when CT = t

(d,p,x,y) : Communication to dependent 'd' allocated to processor 'p' is scheduled
between 'x' and 'y'.

3.3 EXAMPLE l b

Table 7 , a pre-allocation analysis table, presents unequal execution durations

for the nodes of the program graph in figure 13. The table also lists the number

of tokens necessary to represent the result generated by each node. These are also

assumed to be unequal. The earliest time, latest time and order of allocation of

each node, as determined by pre-allocation analysis are also shown in it.

Allocation of the graph represented by this table for token communication

durations of 0, 0.5t and t are represented by figures 17, 18 and 19, and tables 8,

9 and 1 1 respectively. Interprocessor communication schedules for token

communication durations of t/2 and t are represented by tables 10 and 12

respectively. The allocation represented by figure 1 S is explained in the following

paragraph.

Pre-allocation analysis returns a single critical path formed by nodes 1 , 2, 6,

7 and 9. According to the principles of the algorithm, these are to be assigned to

a single processor, namely processor 1. Node 1 is scheduled for execution on

processor 1 at time zero. Node 2 is scheduled at time 3t on the same processor.

The next node scheduled, according to the order determined, is node 4. The

earliest and latest times of this node being 3t and 4t respectively, it is desirable

that this be scheduled for execution as early as possible after time 3t. Processor

1, to which node 4’s only parent, node 1 is allocated, is busy during its slack.

Hence, node 4 is scheduled on processor 2. As node 1 needs two tokens to

represent its output, it takes one time unit to communicate its output to a

different processor. Hence, node 4 is scheduled for execution at time 4t on

processor 2. Communication between node 1 (allocated to processor 1) and node

4 (allocated to processor 4) is scheduled to occur at 3t, and lasts for a duration

o f t . Critical node 6 is scheduled for execution at time 5t on proccssor 1. Like

node 4, node 3 is also only dependent upon node 1 for its input. It is similarly

allocated to processor 3, and scheduled for execution at time 4t. As the crossbar

nctwork allows broadcast communication, data transfer from node 1 , to nodes 3

and 4, is scheduled to occur simultaneously. Critical node 7 is to be executed at

time 6t if delay is not to be introduced in the execution of the program sraph.

I t needs inputs from nodes 3, 4 and 6. As node 6 is also allocated to processor

1, only inputs from nodes 3 and 4 are to be scheduled. Node 3 completes

execution at 5t, and its output is represented by a single token. Hcnce,

communication between node 3 and node 7 is scheduled between time 5t and 5 . 3 .

Node 4 completes execution at 6t, and its output is represented by two tokens,

thus involving a communication duration of t. Communication between nodes 4

41

and 7 is scheduled between 6t and 7t. Thus, the earliest node 7 may execute due

to communication involved, is 7t (its critical time is 6t). Node 7 is therefore

scheduled for execution at 7t. Next in line for allocation, is node 5. The earliest

and latest times of this node are 5t and 9t respectively. Its only parent, namely

node 1, has been allocated to processor 1. As the duration of node 5 is t, and

processor 1 is free between 6t and 7t, node 5 is scheduled for execution at 6t on

processor 1. Node 8 can be executed at any time between 5t and 9t without

introducing queueing delay. As node 4, the only parent of node 8, is allocated to

processor 2, node S is scheduled for execution processor 2 at time 6t. Critical

node 9 is to be scheduled on processor 1. I t needs inputs from nodes 5 , 7 and S.

As nodes 5 and 7 are allocated to processor 1 , only its input from node S has to

be scheduled. Node 8 completes execution on processor 2 at 7t, and produces

only one token. Thus, the communication between node S and 9 is scheduled

between 7t and 7.St. Node 9 is scheduled for esecution on processor 1 at time

1 It, which is the time node 7 completes execution. Thus, the total execution

duration of the graph is found to be 1%.

The minimum duration of execution of this graph, as obtained by earliest

time analysis, was 14t. Allocation of the graph for zero interprocessor token

communication delay results in an execution duration of I4t (the minimum value

possible). Considering interprocessor token communication duration as 1,2t and

t, execution durations of the allocation are found to be 15t and 17t respectively.

One observation that can be made from figures IS and 19 is that although

all the nodes in a critical path are allocated to the same processor, some of them

cannot be executed at their critical times due to their data-dependency on

non-critical nodes, and the finite time involved in interprocessor communication.

JN
I

J O 10 ,

+-
OD

ruR
a, ar" a, E

Q,

43

I
d-

J

Table 7
Pre-allocation analysis with unequal durations for figure 13

6
7
8
9

t I 5t 5t 4
4t 3 6t 6t 6
t 1 5t 9t 8

4t 2 lot 1 O t 9

Table 8
Resource allocation for table 7 when CT = 0

Processor
PRI
PR2
PR3

Sodes (x,y,z)
(0,1,3t) (3t,2,5t) (5t,6,6t) (6 ~ 7 , 1 0 0 (10t,9,14t)
(3 t,-l,5t) (5t,S.6t)
(3t,3,5t) (5t,5,6t)

(x,y,z) : Sode Sy is scheduled to begin execution at x and end at z

PR2
PR3

Table 9
Resource allocation for table 7 when CT = t,’2

(4t ,4,6t) (6 t,8,7t)
(4t,3,5t)

I Processor I Sodes (x,y,z) I
~

PRI I (0,1,3t) (3t,2,5t) (5t,6,6t) (6t,5,7t) (7t,7,1 I t) (1 1t,9,15t) I

Total execution duration = 1 3 ; Minimum time of execution = 13t I
(x,y,z) : Xode Ny is scheduled to begin execution at x and end at z

45

s 7
S8

s 9

Table 10
Schedule of interprocessor communication for table 7 when CT = t/2

PR1,7t,l I t 3
PR2,6t,7t 1 (S9,PRl,7t,7.5t)
PRl , l l t , lS t 2

Processor
PRI
PR2
PR3

(d,p,x,y) : Communication to dependent 'd' allocated to processor 'p' is scheduled
between 'x' and 'y'.

Sodes (x,y,z)

(0,1,3t) (3t,2,5t) (5t,6,6t) (6t,5,7t) (9t,7,13t) (13t,9,17t)
(5t,3,7t) (7t,S,St)

(5t,3,60

Table 1 1
Resource allocation for table 7 when CT = t

~~~~~ ~~~ 

(x,y,z) : Sode Ny is scheduled to  begin execution at x and end at z 



46 

Table 12 
Schedule of interprocessor communication for table 7 when CT = t 

(d,p,x,y) : Communication to dependent ’d’ allocated to processor ’p’ is scheduled 
betwecn ‘x’ and ‘y’. 

3.4 EXAMPLE 2 

Table 13 represents the pre-allocation analysis of a more complex prob oram 

graph shown in figure 20. Nodes 1, 2, 4, 5 ,  8, 9, 12, 13 and 14 are found to be 

critical. Since the identification of critical paths is not as obvious as it was in the 

graph of figure 13, the next few paragraphs dwell upon the determination of 

critical paths. 

Nodes 1 and 2 are both critical, and do  not have any inputs. Hence, each 

of these form the starting node of critical paths 1 and 2 respectively. Node 4 

receives its input only from node 2, and hence belongs to critical path 2. Node 

5 receives its input from both nodes 1 and 2. The critical time of node 5 ,  which 

is 5t, is determined by node I ,  which completes execution at  5t (node 2 completes 

execution at 2t). Hence, node 5 belongs to pathl .  Node S receives its input from 

critical nodes 1 and 4, and both these nodes complete their execution at  the same 



time. As node 4 is last in path 2 (while node 1 is not the last node in path I ) ,  

node 8 is identified as belonging to path 2. As nodes 9 and 13 receive inputs only 

from nodes of path 1, both of them are identified as belonging to it. Similarly, 

node 12 is identified as belonging to path 2. Node 14 receives its inputs from 

both path 2 (node 12) and path 1 (node 13). Both these nodes complete execution 

at 1 1 t. Hence, the choice of the path to which node 14 belongs, depends upon the 

amount of information generated by nodes 12 and 13. I t  is to be allocated to the 

path that generates more information. As node 13 generates two tokens, while 

node 12 generates only one, node 14 is identified as belonging to path 1 .  

Nodes in critical path 1 are to be allocated to processor 1 ,  and those in 

critical path 2 are to be allocated to processor 2. Figures 21, 22 and 23, and 

tables 14, 15 and -17 represent the allocation of the graph shown in figure 20, for 

token communication durations of 0, ti2 and t respectively. Tables 16 and IS 

represent in terprocessor communication schedules for to ken communics tion 

durations of ti2 and t respectively. The allocation represented by figure 23 is 

explained in the following lines. Node 1 is scheduled for execution at processor 

1 at time 0. Node 2 is scheduled processor 2 at time 0. Node 4 receik-es input 

only from node 2, and hence it is scheduled for execution at time 2t on proccssor 

2. Node 5 receives inputs from both nodes 1 and 2. As it belongs to critical path 

1, it is to be scheduled on proccssor 1. As the output of node 2 is represented by 

two data tokens, and interprocessor communication time of each token is t, 

communication between nodes 2 and 5 is scheduled to begin 3t 2t and end at -It. 

Node 5 is scheduled at j t  on processor 1.  Node 8 is to be allocated to processor 

2. Its critical time is St. Although processor 2 is free at this time, node 8 cannot 

be scheduled for execution on it, as the input from node 1 (which complctcs 



48 

execution at 5t) takes two time units to reach it. Hence, node 8 is scheduled to 

execute at 7t on processor 2, and communication between nodes 1 and 8 is 

scheduled to begin at 5t and end at 7t. Node 7 is scheduled for execution at time 

0 on processor 3, which is the first processor that is free during the node’s slack 

time. Node 9 receives its input from node 5 only. It is scheduled to execute at 

time 7t on processor 1. Node 6 receives its input from only node 2, which is 

allocated to processor 2. Processor 2 is free between 5t and 7t, and as the slack 

of node 6 is between 2t and 7t and its execution duration is 2t, it is scheduled to 

begin execution at  5t on processor 2. Node 12 is to be allocated to processor 2. 

Its critical time is 8t, and it receives inputs from nodes 7 and S. Although node 

7 finishes its execution at  3t, communication with node 12 cannot be scheduled 

until 7t, as processor 2 to which node 12 is to be assigned is busy communicating 

with processor 1. Node 7 needs two tokens to represent its output, and hence 

communication between node 7 (on processor 3) and node 12 (on processor 2) 

takes two time periods, beginning at 7t. Node 12 can be scheduled for execution 

on processor 2 only at time lot, as its parent, node S completes execution at this 

time. The slack time of node 10 is between .It and lot. Although processor 3 is 

frce during this time, allocation to this processor cannot be done, as it has to 

receive its input’from node 6 allocated to processor 2. Node 6 completes 

execution at time 7t. However, it cannot communicate its result until 9t, as 

processor 2 is busy communicating with processor 3. Node 6 needs only one 

token to represent its output. The output can therefore reach a different 

processor at time lot, which is when node 10 has to be scheduled. Both 

processors 1 and 3 are free between 10t and 1 It, and node 10 may execute on 

either of them. As node 13, the dependent of node 10, is to be allocated to 



49 

processor 1, node 10 is scheduled to execute on processor 1 at lot. Node 13 is 

scheduled on processor 1 at 1 It. By this time, both its parents, nodes 9 and 10 

would have completed execution. Node 3 receives input only from node 1, and 

its slack time is between 5t and lot. As processor 1, to which node I is assigned 

is busy during this time frame, node 3 can be scheduled only on processor 3 which 

is the next free processor. Communication between nodes 1 and 3 is scheduled 

to occur between 5t and 7t. Node 3 is thus scheduled to execute at 7t on 

processor 3. Node 14 is to be allocated to processor 1. Its parent nodes, 12 and 

13 are allocated to processors 2 and 1 respectively. Node 13 finishes execution 

at 12t and takes two time units for interprocessor communication of its output. 

Node 12 finishes execution at 13t, and takes only one time unit for interprocessor 

communication. Hence node 14 may be allocated to either processor 1 or 2. I t  

is scheduled to begin execution on processor I at 14t. Communication between 

nodes 12 and 14 is between 13t and 1 4 .  Node 1 1  is scheduled to execute on 

proccssor 3 at St. 

Execution durations for allocations of the graph in figure 20, for token 

communication times of 0, t:’2 and t, are found to be l j t ,  16t and 1st respecti\.ely. 

The minimum time of execution of the graph, as found by the earliest time 

analysis, is 15t. 



50 

Figure 20. Program graph 3 



I JO 

cv 1 
ru" 
Q 

Q? c cz 
0, Q 

4 P' 

ru" 
Q 

o? c 

a, @z 
Q- 



52 

. 

f 
c 

I- ‘, 
I ‘t. 

L 

2 

c c 

*- 
C 

c c 

.- 
E 
Fz 



53 

10 
11 
12 
13 
14 

Table 13 
Pre-allocation analysis for figure 20 

t 1 4t 9t 10 
4t 1 6t 1 I t  14 
3x. 1 8t 8t 9 
t 2 1 Ot 1 Ot 11 

4t 1 1 I t  1 I t  13 

PR1 
PR2 

Table 14 
Resource allocation for table 13 when CT = 0 

( 0,1,5t) (St,5,7t) (7t, 9,lOt) (lOt,l3,1 It) ( 1  lt,14,15t) 
( 0,2,2t) (2t,4,5t) ( 3 ,  8, 8t) ( 8t.12.1 I t )  

I Processor I Sodes o<.v.z) I 

PR3 
Total execution duration = 1 3 :  .Minimum time of execution = 15t 

1 ( 0,7,3t) (3t,6,5t) (5t,10, 6t) ( 6t, 3, 7t) ( 7t,l1,1 I t )  

(x,y,z) : Sode Ny is scheduled to begin execution at x and end at z 



54 

Processor 
PRl 
PR2 
PR3 

Table 15 
Resource allocation for table 13 when CT = t/2 

Xodes (x,y,z) 
(0,1,5t) (5t,5,7t) (7t, 9,lOt) (10t,13,1 It) (12.5tT14,16.5t) 
(0,2,2t) (2t,4,5t) (6t, 8, 9t) ( 9tT12,12t) 
(0,7,3t) (3tT6,5t) (5t,10, 6t) ( 6t, 3, 7t) ( 7.0t,l1,11.0t) 

(x,y,z) : Node Ny is scheduled to begin execution at x and end at z 

Table 16 
Schedule of interprocessor communication for table 13 when CT = t /2 

(d,p,x,y) : Communication to dependent 'd' allocated to processor 'p' is scheduled 
between 'x' and 'y'. 



55 . 

Processor 
PR1 
PR2 
PR3 

Table 17 
Resource allocation for table 13 when CT = t 

Nodes (xTy,z) 
(0,1,5t) (5t,5,7t) (7t, 9,lOt) (IOt,lO,l I t )  (llt,13,12t) (14t,14,1St) 
(0,2,2t) (2t,4,5t) (3, 6, 7t) ( 7t, 8,lOt) (10t,12,13t) 
(0,7,3t) (7t,3,8t) (8t,l 1,12t) 

N8 
N9 
XI0 
XI1 
S I 2  
N13 
N14 

. .  . .  

Total execution duration = 18t; Minimu 

PR2,7t, 10t 1 
PRI ,7t, 10t I 
PRl,lOt,I I t  1 
PR3,St,12t 1 
PR2,10t,I3 1 (N I4,PRI, 1 3 ,  I l t )  
PRl,lltT12t 2 
PR1,14tT1St 1 

(x,y,z) : Sode  Sy is scheduled to begin execution at x and end at z 

Table 18 
Schedule of interprocessor communication for table 13 when CT = t 

(d,p,x,y) : Communication to dependent 'd' allocated to processor 'p' is scheduled 
between 'x' and 'y'. 



CHAPTER FOUR 

RESULTS AND CONCLUSIONS 

This research has produced expected results. Given a sufficient number of 

processing elements, on the condition that interprocessor token communication 

time is zero, the algorithm has been successful in spreading any program graph 

over multiple processors to obtain the 'minimum time of execution' as determined 

by the earliest time analysis. 

For non-zero values of interprocessor communication, the increase in total 

execution duration has been found to be small compared to the increase in 

interprocessor token communication times. This is due to the effort made in 

scheduling data-dependent nodes to the same processor, and, considering both 

interprocessor communication time and execution duration in assigning a node to 

the same, or to a different processor, as its parent. The number of interprocessor 

communications scheduled by the algorithm decreased with increased 

interprocessor token-communication durations; Le., more nodes were scheduled 

to a single processor so as to draw a balance between communication and 

queueing delays. The number of processors over which a program graph was 

spread, decreased slightly with increased communication durations. 

Furthermore, even amongst those used, increased communication durations also 

resulted in extra utilization of some processors as compared to others. 

- 

i 



57 

The allocation made and the resulting execution duration , varied with the 

architecture of the communication network. Although, allocation of single 

sub-functions which are mostly sequential did not result in much difference in the 

execution durations, allocation of multiple sub-functions with little 

data-dependency, resulted in higher execution durations for a blocking 

communication network than it did for a non-blocking crossbar. This suggests, 

sub-functions should be allocated to different sub-sections of the arhchitecture, 

having independent communication structures. When allocated to a common 

sub-section, the communication structure has to be non-blocking to allow 

simultaneous execution of sub-functions. 

Tables 14, 15 and 17 represent the allocations of the graph represented by 

table 13 for token communication durations of 0, t/2 and t respectively. Tables 

16 and 18 represent the corresponding communication schedules for token 

communication durations of ti2 and t. The minimum time of execution of this 

graph is 1 3 .  Allocations made for communication times of 0, t i2 and t would 

require 15t, 16.St and 1st time units respectively. The serial execution duration 

of this graph is 37t. Hence, the resulting speedup factor, which is the ratio of 

sequential and parallel execution durations, was found to be 2.47, 2.24 and 2.06 

respectively, for interprocessor communication durations of 0, t/2 and t. 

When both program graphs of figures 13 and 20 were allocated to a single 

sub-section, having a non-blocking communication network, they still 

simultaneously completed execution within the same time frame, as indcpcndcnt 

allocations did in different sub-sections. However, when the crossbar was 

replaced with a blocking network, total execution duration of the two graphs was 

found to be 32t, almost equal to the sum of thcir individual execution durations. 



58 

This indicates that parallelism between sub- functions could not be exploited in 

the latter case, due to limitations of the communication structure. 

The program graph for a missile guidance problem being analyzed at the 

University of Alabama is represented in table A of appendix A. I t  has 109 nodes, 

with varying node execution durations (upto 1 lot). The minimum time of 

execution of this graph has been determined to be 300t time units. Considering 

token communication duration to be zero, the allocation made by the algorithm 

is represented in table B of appendix A. This graph was spread on 30 processors, 

and executed in 300t time units. As the total sequential execution time of this 

graph was 6500t, the speedup factor was found to be 21.66, and the reduction in 

execution duration was 6200t. With communication durations considered equal 

to execution durations of parent nodes, the graph was scheduled over 26 

processors to execute within a time frame of 4SOt. This resulted in a reduction 

of 6020t in the execution duration, and a speedup factor of 13.54. The speedup 

factor was therefore found to reduce in finely granular graphs, where the 

interprocessor communication time plays a significant role. In other words, 

practical systems with significant finite values of interprocessor communication 

times, are expected to return a lower value of the speedup factor as compared to 

the ideal situation. 



1. 

2. 

3. 

4. 

5. 

6 .  

7. 

8. 

9. 

10. 

11. 

12. 

13. 

Yang-Chang 
Allocation in 
55-64. 

BIBLIOGRAPHY 

Thomas H. Payne and Le Baron 0. Ferguson, "Graph 
Dataflow Systems," Proceedings of IEEE. 1986. pp. 

Michael L. Campbell, "Static Allocation for a Dataflow Multiprocessor," 
Proceedings of IEEE on Parallel Processing, 1985, pp. 51 1-517. 

L.Y. Ho and K.B. Irani, "An Algorithm for Processor Allocation in a 
Dataflow Multiprocessing Environment," Proceedings of the In terna tion a1 
Conference on Parallel Processing, 1953. pp. 338-340. 

Pauline Markenscoff and Weikuo Liaw, "Task Allocation Problems in 
Distributed Computer Systems," IEEE Proceedings, 1956. pp. 953-960. 

K.J. Mundell, M.W. Linder and S.E. Conry, "Processor Allocation in Data 
Driven Systems - Two Approaches," Proceedings of the International 
Conference on Parallel Processing, 198 1. pp. 156- 157. 

Y.C. Hong, T.H. Payne and L.O. Ferguson, "Partitioning Program Graphs 
to Enhance Concurrency in Static Dataflow Systems," Dept. of Math and 
Computer Science. Universitv of California. Riverside. November 1985. 

D. Johnson, "Automatic Partitioning of Programs in Multiprocessor 
Systems," IEEE Compson. 1985. 

C.C. Price, "The Assignment of Computational TAsks Among Processors in 
a Distributed System," AFIPS Conference Proceedings. Vol.SO. 198 I .  

C.C Shen and W.H. Tsai, "A Graph Matching Approach to Optimal Task 
Assignment in Distributed Computing Systems Using a Minimax Criterion," 
IEEE Transactions on Computers. Vol. C-34. No. 3. March 1985. 

John Gurd and Ian, "Data Driven System for High Speed Parallel 
Computing," Computer Design. Jul. 1980; pp. 97- 106. 

L.M. Patnaik and Julie Basu, T w o  Tolls for Interprocess Communication in 
Distributed Dataflow systems," Computer Journal. Vol. 29. No. 6. 19S6. pp. 
506-52 1. 

Allan Gottlieb and J.T Schwartz, "Networks and AIgorithrns for 
Very-Large-Scale Parallel Computation," Computer. Jan. 1982. pp. 27-36. 

Daniel Gaiski, David Kuck, Duncan Lawrie and Ahmed Sarneh, "Cedar- A 
Large Scaie Multiprocessor," Proceedings of International Conference on 
Parallel Processing, 1953, pp. 524-529. 

59 



60 . 

14. R. Vedder, M. Campbell and G. Tucker, ”The Hughes Dataflow 
Multiprocessor,’’ Microelectronics Engineering Laboratory, Technical Reportz 

15. M. Amamiya and R. Hasegawa, ”Parallel Execution of Logic Programs Based 

- 1985. pp. 2-9. 

on Dataflow ConceDt.” Fifth Generation Computer Systems 1984, 
Proceesings of the Iiternational Conference 0; Fifth Generation Computer 
Systems. 1984, pp. 507-5 16. 

16. J.D Ullman, “Polynomial NP-complete Scheduling Problems,” Operating 

17. T.L. Adam, K.P. Chandy and J.R. Dickson, ”A Comparison of List 

Systems Review, Vol. 7, No. 4, 1973, pp. 96-101. 

Schedules for Parallel Processing Systems,’’ Communication ACM, Vol. 17: 
Dec. 1974, pp. 685-690. 

18. H. Kasahara and S. Narita, “Practical Multiprocessor Scheduling Algorithms 
for Efficient Parallel Processing,” I EEE Transactions on Computers. Vol. 
C-33, NO. 1 1 ,  NOV. 1984, pp. 1023-1029. 



APPENDIX A 

Table A 
Pre-allocation analysis of the missile guidance problem 

Node Exec. # of Earliest Latest Order Parents Dependents 
# Time Tokens Time Time 

1 0 
2 30t 

3 50t 

4 20t 
5 20t 
6 60t 
7 llOt 
8 llOt 
9 llOt 
10 llOt 
11 llOt 
12 llOt 
13 llOt 
14 llOt 
15 llOt 
16 llOt 
17 IlOt 
18 llOt 
19 l I O t  

21 llOt 
22 llOt 
23 llOt 
24 llOt 
25 llOt 
26 llOt 
27 llOt 
2s llOt 
29 llOt 
30 llOt 
31 llOt 
32 llOt 
33 llOt 
33 llOt 
35 30t 
36 3Ot 
37 30t 

I 20 llOt 

0 
0 

0 

0 
0 

jot 
20t 
20t 
20t 
20t 
20t 
20t 
20t 
20t 
20t 
20 t 
20t 
20 t 
20t 
20t 
20t 
20t 
20 t 
20t 
20t 
20t 
20t 
20t 
20t 
20t 
20 t 
20t 
20t 
20t 
130t 
1 jot 
1 3ot 

0 
40t 

80t 

0 
130t 
70t 
90t 
90t 
40t 
40t 
40t 
40t 
40t 
40t 
40t 
40t 
40 t 
40t 
20t 
20t 
20t 
20t 
20t 
20t 
20t 
20t 
40t 
40t 
20t 
20 t 
20 t 
20t 
20 t 
20t 
I70t 
170t 
1 3ot 

0 
28 1 

30 1 

1 1  
42 I 
29 2 
30 4 
31 4 
16 4 
17 4 
18 4 
19 4 
20 4 
21 4 
22 4 
23 4 
24 4 
25 4 
2 4  
3 4  
4 4  
5 4  
6 4  
7 4  
8 4  
9 4  

26 4 
27 4 
10 4 
11 4 
12 4 
13 4 
14 4 
15 4 
69 6,13 
70 6,14 
32 6,19 

61 

293,495 
6,45,46,57,58,69,70,77 
78,95,96,10j,106 
49,50,63,64,75,76,3 1 
82.10 1,102 
7,8 ,..., 105,109 
87,SS,9 1,92,97,98,103 
35,36,37,38,j9,jO,S3,53 
43 
44 
45,5537 
46,56,58 
49,6 1 
50,62 
35,4 1,43,39,67 
36,42,36,50,63 
61,91 
62.92 
67,69,97 
68,70,98 
37,43,53,57,63,77,103 
38,44,54,5S,64,73,104 
75 
76 
39,47,59,69,71.75,79,5 1 
40,48,60,70,72,76,50,52 
51,6577,s 1,S, 105 
52,66,78,52,54,106 
91 
92 
95 
96 
101 
102 
89,93,95,99,10 1,107 
90,94,96,100.102.1 OS 
41,43,47,51,59,93 
42,43.45,52,90,94 
53,59,65 



62 - 

Table A contd. 

Node Exec. # of Earliest Latest Order Parents Dependents 
# Time. Tokens Time Time 

38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
SO 
81 
82 
83 
84 
85 

30t 
30t 
30t 
30t 
30t 
50t 
50t 
50t 
50t 
50t 
50t 
50t 
50t 
50t 
50t 
30t 
30t 
40t 
40 t 
30t 
30t 
3ot 
3ot 
60t 
60t 
3ot 
30 t 
30 t 
30 t 
60t 
60t 
5Ot 
50t 
3ot 
30t 
40t 
40t 
5ot 
Sot 
50t 
50t 
70 t 
70t 
50t 
50t 
3ot 
30t 
40 t 

I30t 
130t 
130t 
160t 
160t 
160t 
160t 
130t 
130t 
180t 
180t 
130t 
130t 
1 sot 
1 sot 
160t 
160t 
190t 
190t 
130t 
130t 
1 3ot 
160t 
160t 
190t 
1 3ot 
1 3ot 
I60t 
I60t 
190t 
190t 
130t 
130t 
160t 
160t 
190t 
190t 
1 jot  
130t 
130t 
130t 
180t 
1 sot 
I 3ot 
130t 
130t 
130t 
1 sot 

130t 
150t 
150t 
220t 
220t 
200t 
200t 
150t 
150t 
200t 
200t 
150t 
150t 
200t 
200t 
1 sot 
I sot 
210t 
210t 
160t 
160t 
160t 
160t 
190t 
190t 
160t 
160t 
160t 
160t 
190t 
190t 
160t 
160t 
1 sot 
1 sot 
2 lot 
210t 
13Ot 
130t 
1 3ot 
1 3ot 
1 sot 
1 sot 
160t 
160t 
180t 
180t 
210t 

33 
43 
44 
105 
106 
95 
96 
45 
46 
93 
94 
47 
48 
89 
90 
79 
80 
99 
100 
60 
61 
62 
57 
ss 
S 5  
63 
64 
58 
59 
56 
87 
65 
66 
SI 
52 
101 
102 
34 
35 
36 
37 
73 
74 
67 
68 
53 
5.1 
103 

6,20 
6,23 
6,24 
13,35 
14,36 
7,19,35 
80,20,3 6 
2,9,13 
2,10,14 
23,35,45 
24,36,46 
3,11,13 
3,12,14 
25,35,39 
26,36,50 
19,37 
20,38 
933  
10,54 
2,19 
2,20 
23,37 
24.38 
1 I ,  15,57,59 
12,16,5S,60 
3.19 
3.20 
25.37 
26,38 
13,17,63,65 
14,18,64,66 
2,17,23 
2, I8,24 
23.39 
24,40 
69.71 
70,72 
3,21,23 
3,22,23 
2 , 1 9 3  
2,20,26 
23,39,75,77 
24,40,76,75 
3,23,25 
3,24,26 
6,25 
6,26 
S 1.53 

54,60,66 
7 1,79,99 
72,80,100 
109 
109 
109 
109 
47 
48 
109 
109 
51 
52 
109 
109 
55 
56 
m9 
109 
61 
62 
61 
62 
109 
109 
67 
65 
67 
68 
109 
109 
73 
73 
73 
74 
109 
109 
79 
so 
79 
so 
109 
109 
55 
86 
85 
56 
109 



63 

Table A contd. 

Node Exec. # of Earliest Latest Order Parents Dependents 
# Time Tokens Time Time 

86 40t 
87 30t 
88 30t 
89 50t 
90 50t 
91 50t * 

92 50t 
93 50t 
94 50t 
95 50t 
96 50t 
97 30t 
98 30t 
99 70t 
100 70t 
101 50t 
102 50t 
103 30t 
104 30t 
105 30t 
106 30t 
107 70t 
10s 70t 
109 jot  

110 0 

180t 
130t 
130t 
160t 
160t 
130t 
130t 
I80t 
180t 
130t 
130t 
130t 
130t 
1 sot 
1 sot 
1 3ot 
130t 
1 3ot 
1 jot 
1 3ot 
130t 
1 sot 
1 sot 
250t 

3OOt 

210t 104 
170t 71 
170t 72 
200t 97 
200t 98 
15Ot 49 
150t 50 
200t 91 
200t 92 
l3Ot 38 
130t 39 
1SOt 51 
150t 52 
lSOt 75 
lSOt 76 
l3Ot 40 
l3Ot 41 
l5Ot 53 
l5Ot 54 
150t 55 
l5Ot 56 
lSOt 77 
lSOt 7s 
25Ot 107 

300t 110 

82.84 
599 
5,lO 
33,35,87 
34,36,88 
5,15,27 
5,16,28 
33,35,9 1 
34,36,92 
2,29,3 3 
2,30,34 
5,17 
5,lS 
33,39,97,95 
34,40,95,96 
3,3 1.33 
3.32.34 
5,19 
5,20 
2,25 
2,26 
3 3,lO 1 ,103,105 
35,102,101,106 
31 ... 14,47,JS,5 1 
52,55,56,61,62,67 
68,73,74,79,SO,Sj 
86,89,90,93,94,99 
100,107,l OS 
109 

109 
89 
90 
109 
109 
93 
94 
109 
109 
99 
100 
99 
100 
109 
109 
107 
108 
107 
108 
107 
108 
109 
109 
110 



Table B 
Resource allocation for Table A when CT = 0 

PRI 

PR2 
PR3 
PR4 
PR5 
PR6 
PR7 
PRS 

I Processor I Nodes I 
(0,4,20t) (20t,19,13Ot) (130t,37,160t) (160t,65,190t) 
(190t,67,250t) (250t,109,300t) 
(0,5,20t) (20t,20,130t) (130t,3S,160t) (160t,60,190t) (190t,62,250t) 
(20t,21,130t) (130t,75,180t) (ISOt,79,250t) 
(20t,22,130t) ( 130t,76,1 Sot) ( 1 SOt,S0,250t) 
(20t,23,130t) (130t,39,160t) (160t,59,190t) (190t,61,250t) 
(20t,24,13Ot) (130t,40,160t) (160t,63,190t) (190t,47,210t) 
(20t,25,130t) (130t,77,160t) (160t,S7,190t) (190t,51,240t) 
(20t,26,130t) (130t,7S,160t) (160t,66,190t) (190t,68,250t) 

PR9 
PRlO 
PR11 
PR12 

. .  . .  

(20t,29,130t) (130t,103,160t) (160t,SS,190t) (190t,JS,240t) 
(20t,30,13Ot) ( 13Ot,96, I Sot) ( 1  Sot, 100,250t) 
(20t,31,13Ot) (l3Ot,101,180t) (lSOt,107,250t) 
(20t,32,13Ot) (13Ot,102,1SOt) (ISOt,lO8,250t) 

PR13 
PR14 
PR15 
PR16 
PR17 
PRlS 
PR19 
P R20 

I PR21 I (20t,15,130t) (130t,91,1SOt) (ISOt,53,210t) (210t,42,24Ot) 1 

(20t,33,13Ot) (130t,95,180t) (ISOt,99,25Ot) 
(20t,34,13Ot) (130t,104,160t) (ISOt,94,230t) 
(20t99,l3Ot) (13Ot,35,1SOt) (ISOt,71,210t) (210t,S5,250t) 
(20t,10,130t) (130t,46.1SOt) (lSOt,72,210t) (210t,56,25Ot) 

(20t,12,13Ot) (13Ot,50.1SOt) (ISOt,S4,210t) (210t.S6,25Otj 
(20t,13,13Ot) ( I3Or, 10j.160t) ( 160t,35,190t) (190t,9>.210t) 
(20t,13,130t) (130t,106,160t) (160t,36,190t) (190t,52,24Ot) 

(2Ot.l l,l3Ot) ( 1  30t,49.1SOt) (1SOt,S3,210t) (210t.11,240t) 

P R22 
PR23 
P R24 
P R25 

4 
(20t,16,12Ot) (13Ot,92,1SOt) (ISOt,54,210t) 
(20t,17,130t) (13Ot,97,160t) (160t,64,190t) (190t,43,230t) 
(20t,lS,130t) (130t,98,160t) (160t,69,210t) (210t,73,250t) 
(20t,27,13Ot) (130t,57,160t) (160t,70,210t) (210t,74,250t) 

I Total execution duration = 3OOt; Minimum time of execution = 3OOt 1 

I. 

PR26 (20t,2S,l3Ot) (130t,58,160t) (160t,S1,210t) (210t,S5,250t) 
PR27 (0,2,3Ot) (3Ot,6,90t) (90t,7,200t) (200t,4,250t) 
P R2S (0,3,5Ot) (50t,S,160t) (160t,S2,210t) 
PR29 ( 160t,S9,2 lot) 
PR3O ( 160t,90,2 lot) 

~~ ~ 

(x,y,z) : Sode Sy is scheduled to begin execution at x and end at z 



APPENDIX B 

ALGORITHM FOR THE DETERMINATION OF EARLIEST TIMES OF 

ALL NODES. 

- Starting with the root node (Node # 1 which has no parents), and continuing 

until the final node. 

- Earliest time of any node is the latest of 'the earliest times of its parents plus 

their respective execution durations'. 

Assuming Na, Nb and Nc to be the parents of N,. Let Xa, Xb and Xc be 

the execution durations and Ea, Eb and Ec be the earliest times of Na, Nb and 

Nc respectively. Then, the earliest time of Nx is the largest of 

- Finally the 'minimum time of execution' of the graph is determined. 

65 



APPENDIX C 

ALGORITHM FOR THE DETERMINATION OF THE LATEST TIMES 

OF ALL NODES. 

- Starting with the final node. 

- Latest time of nodes with no parents is equal to the difference between the 

minimum time of execution and the execution duration of the node. 

- Latest time of other nodes is the minimum of 'the latest times of the dependents 

minus the execution duration of the node'. 

Assuming Na, Nb and Nc to be the dependents of Nx and La, Lb and Lc their 

respective latest times, and X the execution duration of Nx, the latest time of N, 

~ is given by the minimum of 
I 

66 



APPENDIX D 

Program Allocate; 

(* Each node has associated with it a record called node 
information, which has all the necessary information 
concerning that node *) 

node-information = record 
instruction-number : integer; 
execution-duration : real; 
number-of-sources : integer; 
number-of-destinations : integer; 
source-nodes : array (. 1.3.) of integer; 
destinatioqnodes : array (. 1 ..S.) of integer; 
earliest-time : real; 
latest-time : real; 
critical : boolean; 
outputqriority : array (. 1.3.) of integer; 
processor-allocated : integer; 
load-time : real; 
allocated : boolean; 

end; 

(* The dataflow graph has many nodes in it. *) 

datafloG-graph = array ( .I . .  100.) of node-information; 

(* Within the record of each processor is a field which is 
a array of pointer records. These pointer records 
'exec-time-ranges' contain the beginning and ending 
times of the execution of a particular instruction, and the 
node number of that instruction. ') 

exec-timeqointer = @ exec-time-ranges; 
exec-time-ranges = record 

exec time-begin : real; 
execltime-end : real; 
exec-node : integer; 
exec-link : exec-timeqointer; 

end; 

(* Also, within the record of each processor, is a structure similar 
to 'exec-time-ranges'. This structure called the 'corn-time-ranges 

67 



68 

keeps the beginning and the ending times of communication to and 
from the processor, direction of communication, and the number of 
the other processor that is involved in the communication. *) 

corn-timegointer = @ corn-time-ranges; 
corn-time-ranges = record 

corn-time-begin : real; 
comm-time-end : real; 
origin-node : integer; 
target-node : integer; 
targetqrocessor : integer; 
corn-direction : boolean; 
corn-time-link : corn-timegointer; 

end; 

(* Associated with each processor is a record which houses the 
pertinent information. The 'final-ready-time' is the time 
beyond which no nodes are allocated to the processor for 
execution. 'Busy-times' and 'communication-times' give 
information about the time ranges when the processor is 
executing and communication respectively. The nodes allocated 
to the processor arc stored in an array. *) 

processor-information = record 
number-of-nodes-allocated : integer; 
final-ready-time : real; 
busy-times : exec-time-ranges; 
communication-times : corn-time-ranges; 
head-busy : exec-time-pointer; 
hcad-communication : comm-time-pointer; 
nodes-allocated : array (. 1..100.) of 

integer; 
end; 

(* All the processors form a processor list. The execution times 
of the various instructions are stored in an array. *) 

processor-list = array (. 1 ..20.) of processor-information; 
table-of-execution-times = array (. I ..20.) of real; 

(* Each critical path is a variable length array of records. Each of 
these records contains the serial number and the actual number of 
of a node that belongs to this critical path. There is also a 
pointer to the next of such records if any. All the critical path 
in the dataflow graph are grouped together in 'critical-path- 
collection' which is a structure similar to a 'critical-path'. 
This structure contains one record for each critical-path in the 
dataflow graph. Each of these records contains a 'critical-path' 
structure, its serial number, execution-duration, and a pointer 
to the next of such records housing information about the next 
criticaljath. *) 

criticalgointer = @ criticalgath; 
criticalgath = record 

node-serial-number : integer; 



69 

node-number : integer; 
next-node : criticalgointer; 

end; 
critical-pathsgointer = @ criticalgath-collection; 
critical-path-collection = record 

path-serial-number : integer; 
currentgath : criticalgath; 
path-exec-duration : real; 
head-current-path : critical-pointer; 
nextqath : criticalgathsgointer; 

end; 

var 

node : dataflow-graph; 
processor : processor-list; 
instruction-duration : table-of-execution-times; 
network-communication-times : corn-time-ranges; 
head-network-communication : corn-time-pointer; 
critical-collection : critical-path-collection; 
head-critical-collection : critical-pathsqointer; 
number-of-nodes : integer; 
earliest-graph-execution : real; 
allocation-file,filename : string(. 15.); 
infile,outfile : text; 

(* Procedure execution-times chccks the instruction number associated 
with each node, and after refering to the table of instruction- 
duration updates the exccution-duration nodal information. *) 

Procedure Execution-timcs ( var node : dataflowv-graph; 
var instruction-duration : table-of-execution-times; 
number-of-nodes : integer ): 

var 

instruction, node-number : integer; 

begin 

for node-number : = 1 to number-of-nodes do 

instruction : = node( .node-number.).instruction-number; 
node( .node-number.).execution-duration : = 

begin 

instruction-duration (.instruction.); 
end; (* for *) 

end; (* procedure execution-times *) 



70 . 

(* Procedure earliest-times calculates the earliest time at which 
each node can be executed after satisfying the dependency 
constraints, and updates the corresponding earliest time nodal 
information. The earliest a node can execute, is the earliest 
time when all the information has arrived to it from its parents 
when they have also executed at  their respective earliest times. 
Thus the earliest time of a node is the latest of 'the earliest 
times of its parents plus their respective execution durations'. 
'Earliest-graph-execution' is the earliest time that a graph may 
execute when all the nodes in it have executed at their earliest 
times. The earliest time of a node with no parents is zero. *) 

Procedure Earliest-times ( var node : dataflow-graph ; 
var earliest-graph-execution : real; 
number-of-nodes : integer ); 

var 

earliest, current-earliest : real; 
sources, node-number, current-source : integer; 

begin 

for node-number := 1 to number-of-nodes do 
begin 

earliest := 0; 
for sources : = 1 to node (.node-number.).numbcr-of-sources do 

current-source : = node( .node-numbcr.).source-nodes( .sources.); 
current-earliest : = (node( .current-source.).earliest-time + 

if (current-earliest > earliest) then 

begin 

node( .current-source.).c.ecution_duration); 

earliest : = current-earliest; 
end; (* inner for *) 

earliest-graph-execution : = earliest; 

node( .node-number.).earliest-time : = earliest; 
if (earliest > earliest-graph-execution) then 

end; (* outer for *) 

end; (* procedure earliest-times *) 

(* Procedure Latest-times determines the latest time that each node 
may execute without delaying the total graph execution beyond its 
earliest time 'earliest-graph-execution'. The latest time of a 
node with no dependents is the earliest-&iph-execution minus its 
execution duration. The latest time of a node with dependents is 
the earliest of 'the latest times of its dependents minus their 
respective execution durations'. A node is said to be critical if 
its earliest time is equal to its latest time. *) 

Procedure Latest-times ( var node : dataflow-graph; 
number-of-nodes : integer; 
earliest-graph-execution : real); 



71 

var 

node-number, destination, current-destination : integer; 
latest, current-latest : real; 

begin 

for node-number : = number-of-nodes downto 1 do 
- begin 

latest : = (earliest-graph-execution - 
node (.node-number.).execution-duration); 

for destination : = 1 to node( .node-number.).number-of-destinations 
do begin 

current-destination : = 
node(. node-number.). des tinat ion-nodes(. destina tion.); 

current-latest : = node( .current-destination.).latest-time - 
if (current-latest latest) then 

node( .node-number.).execution-duration; 

latest : = current-latest; 
end; (* inner for *) 

node( .node-number.).latest-time : = latest; 
if (latest = node( .node-number.).earliest-time) then 

node(.node-numbcr.).critical : = true 
else node(.node-number.).critical : = false; 

end; (* outer for *) 

end; (* procedure latest-times *) 

(* Procedure Check-dependency is invoked by procedure Update path only. 
It checks whether 'node-num' is a dependent of 'current-nodelnum', 
and returns a true value in the boolean variable 'member-of-current- 
path' if this is true. This is used in determining whether 'node-num' 
is a member of the critical-path that is being scanned. *) 

Procedure Check-dependency ( var node : dataflowgraph; 
current-node-numbcr, node-num : integer; 
var member-of-currentqath : boolean); 

var 

dependent : boolean; 
dcp-num : integer; 

begin 

dependent : = false; 
dep-num : = I ;  
while (dep-num < = node( .current-node-number.).number-of-destinations) 

and (dependent = false) do 

if (node( .current-node-number.).destination-nodes( .dep-num.) = 
begin 



‘ 72 

node-num) then 

dependent := true; 
begin 

member-of-currentgath : = true; 
end; (* if *) 

dep-num : = dep-num + 1; 
end; (* while *) 

end; (* Procedure Check-dependency *) 

(* Procedure Update-path is invoked by procedure Critical-paths only. 
It checks whether ’node-num’ should belong to the critical path 
’path’, and if so adds it on to the list of nodes in this critical 
path. I t  invokes procedure Check-dependency to check whether 
’node-num’ is a dependent of any of the nodes that were earlier 
entered in path’s list. If this is found to be true, ’node-num’ 
is considered to be a member of ’path’, and the boolean variable 
’found’ is returned as true. *) 

Procedure Update-path ( var path : critical-path; 
var path-exec-duration : real; 
head : critical-pointer; 
var node : dataflowgraph; 
node-num : integer; 
var found : boolean ); 

var 

current-node, create-node : criticalgointer; 
mem ber-o f-current-pat h : boo lean; 
current-node-number : integer; 

begin 

member-of-currentgath : = false; 
current-node : = head; 

(* The while loop given below goes through the pointer list of 
nodes that are already identified as being members of the 
critical path passed to this procedure. Procedure Check- 
dependency is called in an iteration if ’node-num’ has not 
been identified as a member of the critical path. Finally 
if ’node-num’ has been identified as a member of the critical 
path, it is joined to the list of the path’s members at the 
end, and ’found’ is returned as true. *) 

while (current-node < > nil) do 
begin 

if (member-of-current-path = false ) then 
begin 

current-node-number : = current-node @ .node-number; 
Check-dependency (node,current-node-number,node-num, 

member-o f-currentgath); 
end; (* if *) 

if (current-node @.next-node = nil) then 



73 

begin 
if (member-of-currentgath = true) then 

begin 
found := true; 
Xew (create-node); 
current-node @ .nextenode : = create-node; 
create-node @.next-node : = nil; 
create-node @.node-number : = node-num; 
create-node @ .node-serial-number : = 1 + 

curren t-node @ . node-serial-number; 
path-exec-duration : = path-exec-duration + 

node( .node-num.).execution-duration; 
end; (* inner if *) 

current-node : = nil; 
end (* outer if *) 

current-node : = current-node @ .next-node; 
else 

end; (* while *) 

end; (* Procedure Update-path *) 

(* Procedure Criticalgaths dctermines the critical paths that arc 
present in the program graph. I t  scans through the nodes of the 
graph, and for those that are critical, it determines whether they 
are a part of the earlier determined' paths by repeatedly invoking 
procedure Cpdate-path. If the critical node is not found to hc a 
part of earlier determined paths, then a new path is created with 
the current critical node as its first ,member. *) 

Procedure Criticalgaths ( var node : data&low-graph; 
var critical-collection : critical_path_collection; 
var head-critical-collection : critical-pathsgoir1tL.r: 
var number-of-critical-paths : integer ); 

var 

examined-path, previousgath, createdgath : critical-paths-pointer: 
node-num : intcger; 
found : boolean; 

begin 

number-of-criticalgaths : = 0; 
head-critical-collection : = nil; 
for node-num := 1 to number-of-nodes do 

if (node(.node-num.).critical = true) then 
begin 

examinedgath : = head - critical-collection; 
found : = false; 
(* The while loop below checks wheter 'node-num' is a member 

while (examinedgath c > nil) do 

of the various critical paths already identified, and if so 
updates those that contain this node. *) 

begin 



74 . 

Updategath (examined-path @? .currentgath, 
examinedgatha .pa th-exec-duration, 
examinedgath .head-currentgath, 
nodes,node-num,found); 

examined-path : = examinedgath @ .next-path; 
end; (* while *) 

(* If the critical node 'node-num' was not found in the critical 
paths in the while loop above, then a new critical path is 
created in the if structure below, and added to the end in 
the list of critical paths. *) . 

begin 
number-of-critical-paths : = 1 + number-of-criticalpaths; 
previousgath : = head-critical-collection; 
New( createdgath); 
while (previousgath c > nil) do 

if (found = false) then 

if (previousgath @.next-path = nil) then 
begin 

createdgath@ .path-exec-duration : = 0; 
previousgath @ .next-path : = created-path; 
createdgath @ .path-serial-number : = 1 + 

previousgath @..path-scrial-number; 
previousgath : = nil; 

end (* if *) 

previous-path : = previouspath @.next-path; 

head~critical~collection : = created-path; 
createdgath @ .path-serial-number : = 1; 

created-path @.nextgath : = nil; 
Sew(createdgath @ . head-current-path); 
created-path @ .head-current-path @ .node-serial-number : = 1 ; 
createdsath @? .head-current-path @ .next-node : = nil; 
created-path Gj? . head-currentsath @ .node-number : = node-num; 

else 

if (head-critical-collection = nil) then 
begin 

end; 

end; (* if found = fdse *) 
end; (* if node(.node-num.).critical = true *) 

end; (* procedure Criticalsaths *) 

Procedure Determinegroccssor ( var node : dataflow-graph; 
var processor : processor-list; 
var instruction-duration : table-of-execution-times; 
var network-communication-times : corn-time-ranges; 
var head-network-communication : corn-time-pointer; 
node-number : integer; 
var processor selected : integer; 
critical : boolean; 
processor-to-be-allocated : integer; 
number-of-critical-paths : integer ); 



75 . 

begin 

head-network-communication : = nil; 
earliest : = node( .node-number.).earliest-time; 
latest : = node( .node-number.).latest-time; 
command-number : = node( .node-number.).instruction-number; 
exec-time-duration : = instruction-duration( .command-number.); 
node( .node-number.).execution-duration : = exec-time-duration; 
if (critical = true) then 

begin 
if (processor-to-be-allocated > = 0) then 

begin 
if (processor( .processor-to-be-allocated.).final-ready-time 

> = earliest) then 

Procedure Allocate-node-togrocessor (var node : dataflowgraph; 
var processor : processor-list; 
node-num, processor-num : integer; 
time : real; 
var network-communication-times : corn-time-ranges; 
var head-network-communication : corn-time-pointer); 

begin 

node(.node-num.).allocated : = true; 
node( .node-num.).processor-allocated : = processor-num; 
index : = processor(. processor-num.).number-of-nodes-allocated; 
processor( .processor-num.).number-of-nodes-allocated : = index + 1 ; 
processor(. processor-num.).nodes-allocated( .index.) : = node-num; 
time-begin : = time; 
time-end : = time + node( .node-num.).execution-duration; 
if (time-end > processor( .processor-num.).final-ready-time) then 

processor(. processor-num.). final-ready-time : = time-end; 
busy : = processor(.processor-num.).head-busy; 
prev-busy : = busy; 
added := false; 
while (busy < > nil) and (added < > true) do 

begin 
if (busy@ .exec-time-bcgin > = time-end) then 

begin 
New (create-busy); 
if (busy = prev) then 

head : = create-busy 
else 

prev-busy@ .exec-link : = create-busy; 
create-busy@ .exec-link : = busy; 
create busy@ .exec-time-begin : = time-begin; 
createIbusy@ .exec-time-end : = time-end; 
create busy@ .exec-node : = node - num; 
added- = true; 

end; (* if *) 

prev-busy : = prev-busy@ .exec-link; 
if (busy < > prev) then 



76 

busy : = busy@ .exec-link; 
end; (* while *) 

end; (* Procedure Allocate-node-togrocessor *) 

Procedure Allocate-criticalqath ( 
var critical-collection : criticalqath-collection; 
var pointer-toqath : criticalgathsgointer; . var network-communication-times : comm-time-ranges; 
var head-network-communication : comm-time-pointer; 
var node : dataflow-graph; 
var processor : processor-list; 
processor-num : integer) ; 

var 

current-node, pointer-to-node : critical-pointer; 
current-node-number : integer; 
time : real; 

begin 

pointer-to-node : = pointer-toga th@ . head-current-path; 
current-node : = pointer-to-node; 
rcpeat 

current-node-num : = current-nodc@ .node-number; 
time : = node( .current-node-numbcr.).earliest; 
Allocil te-node-to-processor( node,processor,current-node-num, 

proccssor-num, time,network-communication-times, 
head-network-communication); 

current-node : = current-node@ .next-node; 
until (current-node = nil); 

end; (* Procedure Allocate-Criticalgath *) 

Procedure Do-the-allocation (var node : dataflow-graph; 
var processor : processor-list; 
var instruction-duration : table-of-execution-times; 
var network-communication-times : corn-time-ranges; 
var critical-collection : criticalgath-collection; 
var head-network-communication : corn-time-pointer; 
head-critical-collection : criticalgaths-pointer; 
number-of-nodes : integer; 
number-ofgrocessors : integer; 
number-of-criticalgaths : integer); 

var 

next-critical-pa th : cri t icalga ths-pointer; 



77 

next-critical-node : criticalqointer; 
node-number,processor-num : integer; 

begin 

head-network-communication : = nil; 
next-cri t icalga th : = head-cri tical-c ollec tion; 
processor-num : = 1; 
while (next-criticalgath < > nil) do 
beein 

node, processor, processor-num); 
processor-num : = processor-num + 1 ; 
next-criticalqath : = next-criticalgath@ a e x t g a t h ;  

next-critical-node : = next-criticalgath @J . head-current-path; 
while (next-critical-node c > nil ) do 

end; 

begin 
node-number : = next-critical-node 9 .node-number; 
Determinegrocessor (node,processor,instruction_duration, 

Update (processor,node,node-number,processor-selected); 
next-critical-node : = next - critical-node @ .next-node; 

network-communication-times,hcad-ne twork-communication, 
node-number, processor-selected); 

end; (* inner while loop *) 
next-criticalgath : = next-critical-path @? .nextqath; 

end; (* outer while loop *) 
for node-number := 1 to number-of-nodes do 

if (node(.node-number.).allocated c == true)then 
begin 

Determine-processor (node,processor,instruction_duration, 

Update (proccssor,node,node-number,processor-selected); 

network-communication_times,head_network-communic~tion, 
node-number,processor-selected); 

end; (* if *) 

end; (* procedure do-the-allocation *) 

(* The main body of the program reads nodal information from a user 
specified file, and invokes the various procedures to perform the 
allocation. *) 

begin 

writeln ('ALLOCATOR AT WORK'); 
write ('Program graph file name?'); 
readln (filename); 
assign (infile,filename); 
reset (infile); 
readln (in file, number-of-nodes); 

for I := I to number-of-nodes do 
begin 



with node (.I.) 

for J : = 1 to node (.I.).num-of-sources do 

for J : = 1 to node (.I.).num-of-dependents do 

readln (instrucion-number,num_of-sources,Sum-of-dependents); 

with node (.I.) 

with node (.I.) 

read (source-nodes (.J.)); 

78. . 

readln (destination-nodes (.J.)); 
end; (* input of nodes *) 

Execution-times (node,instruction-duration,number-of-nodes); 
Earliest-times (node,earliest-graph-execution,number-of-nodes); 
Latest-times (node,number-of-nodes,earliest-graph-execution); 
Criticalgaths (node,critical_collection,head~critical~collection, 

~ - 
number-of-criticalgaths); 

Do-the-allocation (node,processor,instruction-duration, 
network-communication-times,critical-collection, 
head-network-communication, head-critical-collection 
number-o f-nodes,number-of-processors, 
number-of-criticalgaths); 

writeln (’Output file name?’); 
readln (allocation-file); 
assign (outfile,allocation-file); 
rewrite (outfile); 
for I := 1 to number-of-nodes do 

begin 
write (outfile,I,’ ’,node(.I.).processor-allocated,’ ’); 
write (outfile,node(. I .).load-time,’ ’); 
write (outfile,node( .I.).execution-duration,’ ’); 

end; 

Close (infile); 
Close (outfile); 

ESD. 


